Bài 6 Trang 133 Sgk Toán 11

     
 Bài 2 Giới hạn của hàm số. Giải bài 5, 6,7 trang 133 Sách giáo khoa Đại số và Giải tích 11. Giải bài tập trang 133. Cho hàm số; Một thấu kính hội tụ có tiêu cự là

Bài 5: Cho hàm số \(f(x) = \frac{x+2}{x^{2}-9}\) có đồ thị như trên hình 53.

Bạn đang xem: Bài 6 trang 133 sgk toán 11

*

a) Quan sát đồ thị và nêu nhận xét về giá trị hàm số đã cho khi \(x → -∞\), \(x → 3^-\) và \(x → -3^+\)

b) Kiểm tra các nhận xét trên bằng cách tính các giới hạn sau:

\(\underset{x\rightarrow -\infty }{\lim} f(x)\) với \(f(x)\) được xét trên khoảng \((-\infty; -3)\),

\(\underset{x\rightarrow 3^{-}}{\lim} f(x)\) với \(f(x)\) được xét trên khoảng \((-3,3)\),

\(\underset{x\rightarrow -3^{+}}{lim} f(x)\) với \(f(x)\) được xét trên khoảng \((-3; 3)\).

a) Quan sát đồ thị ta thấy \(x → -∞\) thì \(f(x) → 0\); khi \(x → 3^-\) thì \(f(x) → -∞\);

khi \(x → -3^+\) thì \(f(x) → +∞\).


Quảng cáo


b) \(\underset{x\rightarrow -\infty }{lim} f(x) = \underset{x\rightarrow -\infty }{lim}\) \(\frac{x+2}{x^{2}-9}\) = \(\underset{x\rightarrow -\infty }{lim}\) \(\frac{\frac{1}{x}+\frac{2}{x^{2}}}{1-\frac{9}{x^{2}}} = 0\).

\(\underset{x\rightarrow 3^{-}}{lim} f(x) = \underset{x\rightarrow 3^{-}}{lim}\)\(\frac{x+2}{x^{2}-9}\) = \(\underset{x\rightarrow 3^{-}}{lim}\)\(\frac{x+2}{x+3}.\frac{1}{x-3} = -∞ \) vì \(\underset{x\rightarrow 3^{-}}{lim}\)\(\frac{x+2}{x+3}\) = \(\frac{5}{6} > 0\) và \(\underset{x\rightarrow 3^{-}}{\lim} \frac{1}{x-3} = -∞\).

\(\underset{x\rightarrow -3^{+}}{lim} f(x) =\) \(\underset{x\rightarrow -3^{+}}{lim}\) \(\frac{x+2}{x^{2}-9}\) = \(\underset{x\rightarrow -3^{+}}{lim}\) \(\frac{x+2}{x-3}\) . \(\frac{1}{x+3} = +∞\)vì \(\underset{x\rightarrow -3^{+}}{lim}\) \(\frac{x+2}{x-3}\) = \(\frac{-1}{-6}\) = \(\frac{1}{6} > 0\) và \(\underset{x\rightarrow -3^{+}}{lim}\) \(\frac{1}{x+3} = +∞\).

Bài 6: Tính:

\(\eqalign{& a)\mathop {\lim }\limits_{x \to + \infty } ({x^4} – {x^2} + x – 1) \cr& b)\mathop {\lim }\limits_{x \to – \infty } ( – 2{x^3} + 3{x^2} – 5) \cr& c)\mathop {\lim }\limits_{x \to – \infty } (\sqrt {{x^2} – 2x + 5}) \cr& d)\mathop {\lim }\limits_{x \to + \infty } {{\sqrt {{x^2} + 1} + x} \over {5 – 2x}} \cr} \)


Quảng cáo


\(\eqalign{& a)\mathop {\lim }\limits_{x \to + \infty } ({x^4} – {x^2} + x – 1) = \mathop {\lim }\limits_{x \to + \infty } {x^4}\left( {1 – {1 \over {{x^2}}} + {1 \over {{x^3}}} – {1 \over {{x^4}}}} \right) = + \infty \cr& b)\mathop {\lim }\limits_{x \to – \infty } ( – 2{x^3} + 3{x^2} – 5) = \mathop {\lim }\limits_{x \to – \infty } {x^3}\left( { – 2 + {1 \over x} – {5 \over {{x^2}}}} \right) = + \infty \cr& c)\mathop {\lim }\limits_{x \to – \infty } (\sqrt {{x^2} – 2x + 5} ) = \mathop {\lim }\limits_{x \to – \infty } |x|\sqrt {1 – {2 \over x} + {5 \over {{x^2}}}} = + \infty \cr& d)\mathop {\lim }\limits_{x \to + \infty } {{\sqrt {{x^2} + 1} + x} \over {5 – 2x}} = \mathop {\lim }\limits_{x \to + \infty } {{x\left( {\sqrt {1 + {1 \over {{x^2}}}} + 1} \right)} \over {5 – 2x}} = \mathop {\lim }\limits_{x \to + \infty } {{\left( {\sqrt {1 + {1 \over {{x^2}}}} + 1} \right)} \over {{5 \over x} – 2}} = – 1 \cr} \)

Bài 7: Một thấu kính hội tụ có tiêu cự là \(f\). Gọi \(d\) và \(d’\) lần lượt là khoảng cách từ một vật thật \(AB\) và từ ảnh \(A’B’\) của nó tới quang tâm \(O\) của thấu kính (h.54). Công thức thấu kính là \(\frac{1}{d}+\frac{1}{d’}=\frac{1}{f}.\)

*

a) Tìm biểu thức xác định hàm số \(d’ = φ(d)\).

b) Tìm \(\underset{d\rightarrow f^{+} }{\lim} φ(d)\), \(\underset{d\rightarrow f^{-} }{\lim} φ(d)\) và \(\underset{d\rightarrow +\infty }{\lim} φ(d)\). Giải thích ý nghĩa của các kết quả tìm được.

Xem thêm: Dịch Sang Tiếng Anh Trọng Nam Khinh Nữ Tiếng Anh Là Gì, Tra Từ Trọng Nam Khinh Nữ

a) Từ hệ thức \(\frac{1}{d}+\frac{1}{d’}=\frac{1}{f}.\)suy ra \(d’ = φ(d) = \frac{fd}{d-f}\).

b)

+) \(\underset{d\rightarrow f^{+} }{lim} φ(d) = \underset{d\rightarrow f^{+} }{lim}\) \(\frac{fd}{d-f}= +∞\) .

Ý nghĩa: Nếu vật thật AB tiến dần về tiêu điểm F sao cho d luôn lớn hơn f thì ảnh của nó dần tới dương vô cực.

+) \(\underset{d\rightarrow f^{-} }{lim}φ(d) =\) \(\underset{d\rightarrow f^{-} }{lim}\) \(\frac{fd}{d-f} = -∞\).

Ý nghĩa: Nếu vật thật AB tiến dần về tiêu điểm F sao cho d luôn nhỏ hơn f thì ảnh của nó dần tới âm vô sực.

+) \(\underset{d\rightarrow +\infty }{lim} φ(d) =\) \(\underset{d\rightarrow +\infty }{lim}\) \(\frac{fd}{d-f}\) = \(\underset{d\rightarrow +\infty }{lim}\) \(\frac{f}{1-\frac{f}{d}} = f\).

Xem thêm: 18, Sống Chung Với Kề Trộm Đam, Ta Là Một Tên Trộm

Ý nghĩa: Nếu vật thật AB ở xa vô cực so với thấu kính thì ảnh của nó ở ngay trên tiêu diện ảnh (mặt phẳng qua tiêu điểm ảnh F’ và vuông góc với trục chính).